191 research outputs found

    Predicting climate change impacts on polar bear litter size

    Get PDF
    Predicting the ecological impacts of climate warming is critical for species conservation. Incorporating future warming into population models, however, is challenging because reproduction and survival cannot be measured for yet unobserved environmental conditions. In this study, we use mechanistic energy budget models and data obtainable under current conditions to predict polar bear litter size under future conditions. In western Hudson Bay, we predict climate warming-induced litter size declines that jeopardize population viability: ∼28% of pregnant females failed to reproduce for energetic reasons during the early 1990s, but 40–73% could fail if spring sea ice break-up occurs 1 month earlier than during the 1990s, and 55–100% if break-up occurs 2 months earlier. Simultaneously, mean litter size would decrease by 22–67% and 44–100%, respectively. The expected timeline for these declines varies with climate-model-specific sea ice predictions. Similar litter size declines may occur in over one-third of the global polar bear population

    Subtidal macrozoobenthos communities from northern Chile during and post El Niño 1997–1998

    No full text
    Despite a large amount of climatic and oceanographic information dealing with the recurring climate phenomenon El Niño (EN) and its well known impact on diversity of marine benthic communities, most published data are rather descriptive and consequently our understanding of the underlying mechanisms and processes that drive community structure during EN are still very scarce. In this study, we address two questions on the effects of EN on macrozoobenthic communities: (1) how does EN affect species diversity of the communities in northern Chile? and (2) is EN a phenomenon that restarts community assembling processes by affecting species interactions in northern Chile? To answer these questions, we compared species diversity and co-occurrence patterns of soft-bottoms macrozoobenthos communities from the continental shelf off northern Chile during (March 1998) and after (September 1998) the strong EN event 1997–1998. The methods used varied from species diversity and species co-occurrence analyses to multivariate ordination methods. Our results indicate that EN positively affects diversity of macrozoobenthos communities in the study area, increasing the species richness and diversity and decreasing the species dominance. EN represents a strong disturbance that affects species interactions that rule the species assembling processes in shallow-water, sea-bottom environments

    The effects of an enhanced simulation programme on medical students' confidence responding to clinical deterioration

    Get PDF
    BACKGROUND: Clinical deterioration in adult hospital patients is an identified issue in healthcare practice globally. Teaching medical students to recognise and respond to the deteriorating patient is crucial if we are to address the issue in an effective way. The aim of this study was to evaluate the effects of an enhanced simulation exercise known as RADAR (Recognising Acute Deterioration: Active Response), on medical students’ confidence. METHODS: A questionnaire survey was conducted; the instrument contained three sections. Section 1 focused on students’ perceptions of the learning experience; section 2 investigated confidence. Both sections employed Likert-type scales. A third section invited open responses. Questionnaires were distributed to a cohort of third-year medical students (n = 158) in the North East of Scotland 130 (82 %) were returned for analysis, employing IBM SPSS v18 and ANOVA techniques. RESULTS: Students’ responses pointed to many benefits of the sessions. In the first section, students responded positively to the educational underpinning of the sessions, with all scores above 4.00 on a 5-point scale. There were clear learning outcomes; the sessions were active and engaging for students with an appropriate level of challenge and stress; they helped to integrate theory and practice; and effective feedback on their performance allowed students to reflect and learn from the experience. In section 2, the key finding was that scores for students’ confidence to recognise deterioration increased significantly (p. < .001) as a result of the sessions. Effect sizes (Eta(2)) were high, (0.68–0.75). In the open-ended questions, students pointed to many benefits of the RADAR course, including the opportunity to employ learned procedures in realistic scenarios. CONCLUSIONS: The use of this enhanced form of simulation with simulated patients and the judicious use of moulage is an effective method of increasing realism for medical students. Importantly, it gives them greater confidence in recognising and responding to clinical deterioration in adult patients. We recommend the use of RADAR as a safe and cost-effective approach in the area of clinical deterioration and suggest that there is a need to investigate its use with different patient groups

    The Daily Mile makes primary school children more active, less sedentary and improves their fitness and body composition: a quasi-experimental pilot study

    Get PDF
    Background: The Daily Mile is a physical activity programme made popular by a school in Stirling, Scotland. It is promoted by the Scottish Government and is growing in popularity nationally and internationally. The aim is that each day, during class time, pupils run or walk outside for 15 min (~1 mile) at a self-selected pace. It is anecdotally reported to have a number of physiological benefits including increased physical activity, reduced sedentary behaviour, increased fitness and improved body composition. This study aimed to investigate these reports. Methods: We conducted a quasi-experimental repeated measures pilot study in two primary schools in the Stirling Council area: one school with, and one without, intention to introduce the Daily Mile. Pupils at the control school followed their usual curriculum. Of the 504 children attending the schools, 391 children in primary classes 1–7 (age 4–12 years) at the baseline assessment took part. The follow-up assessment was in the same academic year. Outcomes were accelerometer-assessed average daily moderate to vigorous intensity physical activity (MVPA) and average daily sedentary behaviour, 20-m shuttle run fitness test performance and adiposity assessed by the sum of skinfolds at four sites. Valid data at both time points were collected for 118, 118, 357 and 327 children, respectively, for each outcome. Results: After correction for age and gender, significant improvements were observed in the intervention school relative to the control school for MVPA, sedentary time, fitness and body composition. For MVPA, a relative increase of 9.1 min per day (95% confidence interval or 95%CI 5.1–13.2 min, standardised mean difference SMD = 0.407, p = 0.027) was observed. For sedentary time, there was a relative decrease of 18.2 min per day (10.7–25.7 min, SMD = 0.437, p = 0.017). For the shuttle run, there was a relative increase of 39.1 m (21.9–56.3, SMD = 0.236, p = 0.037). For the skinfolds, there was a relative decrease of 1.4 mm (0.8–2.0 mm, SMD = 0.246, p = 0.036). Similar results were obtained when a correction for socioeconomic groupings was included. Conclusions: The findings show that in primary school children, the Daily Mile intervention is effective at increasing levels of MVPA, reducing sedentary time, increasing physical fitness and improving body composition. These findings have relevance for teachers, policymakers, public health practitioners, and health researchers

    Patient-, organization-, and system-level barriers and facilitators to preventive oral health care:A convergent mixed-methods study in primary dental care

    Get PDF
    Background: Dental caries is the most common chronic disease of adult and childhood, a largely preventable yet widespread, costly public health problem. This study identified patient-, organization-, and system-level factors influencing routine delivery of recommended care for prevention and management of caries in primary dental care. Methods: A convergent mixed-methods design assessed six guidance-recommended behaviours to prevent and manage caries (recording risk, risk-based recall intervals, applying fluoride varnish, placing preventive fissure sealants, demonstrating oral health maintenance, taking dental x-rays). A diagnostic questionnaire assessing current practice, beliefs, and practice characteristics was sent to a random sample of 651 dentists in National Health Service (NHS) Scotland. Eight in-depth case studies comprising observation of routine dental visits and dental team member interviews were conducted. Patient feedback was collected from adult patients with recent checkups at case study practices. Key informant interviews were conducted with decision makers in policy, funding, education, and regulation. The Theoretical Domains Framework within the Behaviour Change Wheel was used to identify and describe patient-, organization-, and system-level barriers and facilitators to care. Findings were merged into a matrix describing theoretical domains salient to each behaviour. The matrix and Behaviour Change Wheel were used to prioritize behaviours for change and plan relevant intervention strategies. Results: Theoretical domains associated with best practice were identified from the questionnaire (N-196), case studies (N = 8 practices, 29 interviews), and patient feedback (N = 19). Using the study matrix, key stakeholders identified priority behaviours (use of preventive fissure sealants among 6–12-year-olds) and strategies (audit and feedback, patient informational campaign) to improve guidance implementation. Proposed strategies were assessed as appropriate for immediate implementation and suitable for development with remaining behaviours. Conclusions: Specific, theoretically based, testable interventions to improve caries prevention and management were coproduced by patient-, practice-, and policy-level stakeholders. Findings emphasize duality of behavioural determinants as barriers and facilitators, patient influence on preventive care delivery, and benefits of integrating multi-level interests when planning interventions in a dynamic, resource-constrained environment. Interventions identified in this study are actively being used to support ongoing implementation initiatives including guidance, professional development, and oral health promotion

    Blockade of interleukin-6 signaling inhibits the classic pathway and promotes an alternative pathway of macrophage activation after spinal cord injury in mice

    Get PDF
    Background Recent in vivo and in vitro studies in non-neuronal and neuronal tissues have shown that different pathways of macrophage activation result in cells with different properties. Interleukin (IL)-6 triggers the classically activated inflammatory macrophages (M1 phenotype), whereas the alternatively activated macrophages (M2 phenotype) are anti-inflammatory. The objective of this study was to clarify the effects of a temporal blockade of IL-6/IL-6 receptor (IL-6R) engagement, using an anti-mouse IL-6R monoclonal antibody (MR16-1), on macrophage activation and the inflammatory response in the acute phase after spinal cord injury (SCI) in mice. Methods MR16-1 antibodies versus isotype control antibodies or saline alone were administered immediately after thoracic SCI in mice. SC tissue repair was compared between the two groups by Luxol fast blue (LFB) staining for myelination and immunoreactivity for the neuronal markers growth-associated protein (GAP)-43 and neurofilament heavy 200 kDa (NF-H) and for locomotor function. The expression of T helper (Th)1 cytokines (interferon (IFN)-? and tumor necrosis factor-a) and Th2 cytokines (IL-4, IL-13) was determined by immunoblot analysis. The presence of M1 (inducible nitric oxide synthase (iNOS)-positive, CD16/32-positive) and M2 (arginase 1-positive, CD206-positive) macrophages was determined by immunohistology. Using flow cytometry, we also quantified IFN-? and IL-4 levels in neutrophils, microglia, and macrophages, and Mac-2 (macrophage antigen-2) and Mac-3 in M2 macrophages and microglia. Results LFB-positive spared myelin was increased in the MR16-1-treated group compared with the controls, and this increase correlated with enhanced positivity for GAP-43 or NF-H, and improved locomotor Basso Mouse Scale scores. Immunoblot analysis of the MR16-1-treated samples identified downregulation of Th1 and upregulation of Th2 cytokines. Whereas iNOS-positive, CD16/32-positive M1 macrophages were the predominant phenotype in the injured SC of non-treated control mice, MR16-1 treatment promoted arginase 1-positive, CD206-positive M2 macrophages, with preferential localization of these cells at the injury site. MR16-1 treatment suppressed the number of IFN-?-positive neutrophils, and increased the number of microglia present and their positivity for IL-4. Among the arginase 1-positive M2 macrophages, MR16-1 treatment increased positivity for Mac-2 and Mac-3, suggestive of increased phagocytic behavior. Conclusion The results suggest that temporal blockade of IL-6 signaling after SCI abrogates damaging inflammatory activity and promotes functional recovery by promoting the formation of alternatively activated M2 macrophages

    Structural Basis of Cytotoxicity Mediated by the Type III Secretion Toxin ExoU from Pseudomonas aeruginosa

    Get PDF
    The type III secretion system (T3SS) is a complex macromolecular machinery employed by a number of Gram-negative pathogens to inject effectors directly into the cytoplasm of eukaryotic cells. ExoU from the opportunistic pathogen Pseudomonas aeruginosa is one of the most aggressive toxins injected by a T3SS, leading to rapid cell necrosis. Here we report the crystal structure of ExoU in complex with its chaperone, SpcU. ExoU folds into membrane-binding, bridging, and phospholipase domains. SpcU maintains the N-terminus of ExoU in an unfolded state, required for secretion. The phospholipase domain carries an embedded catalytic site whose position within ExoU does not permit direct interaction with the bilayer, which suggests that ExoU must undergo a conformational rearrangement in order to access lipids within the target membrane. The bridging domain connects catalytic domain and membrane-binding domains, the latter of which displays specificity to PI(4,5)P2. Both transfection experiments and infection of eukaryotic cells with ExoU-secreting bacteria show that ExoU ubiquitination results in its co-localization with endosomal markers. This could reflect an attempt of the infected cell to target ExoU for degradation in order to protect itself from its aggressive cytotoxic action
    corecore